Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Travel Med ; 30(3)2023 05 18.
Article in English | MEDLINE | ID: covidwho-2274411

ABSTRACT

BACKGROUND: Melioidosis, caused by Burkholderia pseudomallei, may be considered a neglected tropical disease that remains underdiagnosed in many geographical areas. Travellers can act as the sentinels of disease activity, and data from imported cases may help complete the global map of melioidosis. METHODS: A literature search for imported melioidosis for the period 2016-22 was performed in PubMed and Google Scholar. RESULTS: In total, 137 reports of melioidosis associated with travel were identified. The majority were males (71%) and associated with exposure in Asia (77%) (mainly Thailand, 41%, and India, 9%). A minority acquired the infection in the Americas-Caribbean area (6%), Africa (5%) and Oceania (2%). The most frequent comorbidity was diabetes mellitus (25%) followed by underlying pulmonary, liver or renal disease (8, 5 and 3%, respectively). Alcohol/tobacco use were noted for seven and six patients, respectively (5%). Five patients (4%) had associated non-human immunodeficiency virus (HIV)-related immunosuppression, and three patients (2%) had HIV infection. One patient (0.8%) had concomitant coronavirus disease 19. A proportion (27%) had no underlying diseases. The most frequent clinical presentations included pneumonia (35%), sepsis (30%) and skin/soft tissue infections (14%). Most developed symptoms <1 week after return (55%), and 29% developed symptoms >12 weeks after. Ceftazidime and meropenem were the main treatments used during the intensive intravenous phase (52 and 41% of patients, respectively) and the majority (82%) received co-trimoxazole alone/combination, for the eradication phase. Most patients had a favourable outcome/survived (87%). The search also retrieved cases in imported animals or cases secondary to imported commercial products. CONCLUSIONS: As post-pandemic travel soars, health professionals should be aware of the possibility of imported melioidosis with its diverse presentations. Currently, no licensed vaccine is available, so prevention in travellers should focus on protective measures (avoiding contact with soil/stagnant water in endemic areas). Biological samples from suspected cases require processing in biosafety level 3 facilities.


Subject(s)
Burkholderia pseudomallei , COVID-19 , HIV Infections , Melioidosis , Male , Animals , Humans , Female , Melioidosis/diagnosis , Melioidosis/epidemiology , Melioidosis/drug therapy , Travel , HIV Infections/complications , Risk Factors , COVID-19/epidemiology , COVID-19/complications , Thailand , Anti-Bacterial Agents/therapeutic use
2.
PLoS One ; 18(2): e0280944, 2023.
Article in English | MEDLINE | ID: covidwho-2271344

ABSTRACT

Melioidosis is an infectious disease with high mortality rates in human, caused by the bacterium Burkholderia pseudomallei. As an intracellular pathogen, B. pseudomallei can escape from the phagosome and induce multinucleated giant cells (MNGCs) formation resulting in antibiotic resistance and immune evasion. A novel strategy to modulate host response against B. pseudomallei pathogenesis is required. In this study, an active metabolite of vitamin D3 (1α,25-dihydroxyvitamin D3 or 1α,25(OH)2D3) was selected to interrupt pathogenesis of B. pseudomallei in a human lung epithelium cell line, A549. The results demonstrated that pretreatment with 10-6 M 1α,25(OH)2D3 could reduce B. pseudomallei internalization to A549 cells at 4 h post infection (P < 0.05). Interestingly, the presence of 1α,25(OH)2D3 gradually reduced MNGC formation at 8, 10 and 12 h compared to that of the untreated cells (P < 0.05). Furthermore, pretreatment with 10-6 M 1α,25(OH)2D3 considerably increased hCAP-18/LL-37 mRNA expression (P < 0.001). Additionally, pro-inflammatory cytokines, including MIF, PAI-1, IL-18, CXCL1, CXCL12 and IL-8, were statistically decreased (P < 0.05) in 10-6 M 1α,25(OH)2D3-pretreated A549 cells by 12 h post-infection. Taken together, this study indicates that pretreatment with 10-6 M 1α,25(OH)2D3 has the potential to reduce the internalization of B. pseudomallei into host cells, decrease MNGC formation and modulate host response during B. pseudomallei infection by minimizing the excessive inflammatory response. Therefore, 1α,25(OH)2D3 supplement may provide an effective supportive treatment for melioidosis patients to combat B. pseudomallei infection and reduce inflammation in these patients.


Subject(s)
Melioidosis , Humans , Melioidosis/drug therapy , Vitamin D , Vitamins , Epithelial Cells/metabolism , Lung/metabolism , Giant Cells/metabolism , Dietary Supplements
3.
Lancet Infect Dis ; 22(6): e176-e182, 2022 06.
Article in English | MEDLINE | ID: covidwho-1864662

ABSTRACT

Melioidosis is a tropical infection caused by the soil bacterium Burkholderia pseudomallei. Despite the substantial impact of this often overlooked pathogen on both the health-care systems and economies of numerous low-income and middle-income countries around the world, melioidosis is not officially classified as a neglected tropical disease (NTD) by WHO. Melioidosis causes a higher estimated disease burden and mortality than many other recognised NTDs, with deaths primarily occurring among rural poor populations in low-income and middle-income countries. Fortunately, the impact of melioidosis in a region can be reduced once awareness is established of its known or suspected endemicity. In this Personal View, we provide evidence in support of official recognition of melioidosis as an NTD. We urge member states to request that WHO revisit their NTD list and appeal to government and philanthropic organisations to establish programmes in endemic countries to control melioidosis in order to reduce its global health burden.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Cost of Illness , Global Health , Humans , Melioidosis/diagnosis , Melioidosis/epidemiology , Neglected Diseases/epidemiology
4.
N Engl J Med ; 386(9): 861-868, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1721753

ABSTRACT

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.


Subject(s)
Aromatherapy/adverse effects , Burkholderia pseudomallei/isolation & purification , Disease Outbreaks , Melioidosis/epidemiology , Aerosols , Brain/microbiology , Brain/pathology , Burkholderia pseudomallei/genetics , COVID-19/complications , Child, Preschool , Fatal Outcome , Female , Genome, Bacterial , Humans , Lung/microbiology , Lung/pathology , Male , Melioidosis/complications , Middle Aged , Phylogeny , Shock, Septic/microbiology , United States/epidemiology
5.
Front Immunol ; 12: 718719, 2021.
Article in English | MEDLINE | ID: covidwho-1376701

ABSTRACT

Burkholderia pseudomallei (B. pseudomallei) causes melioidosis, a potentially fatal disease for which no licensed vaccine is available thus far. The host-pathogen interactions in B. pseudomallei infection largely remain the tip of the iceberg. The pathological manifestations are protean ranging from acute to chronic involving one or more visceral organs leading to septic shock, especially in individuals with underlying conditions similar to COVID-19. Pathogenesis is attributed to the intracellular ability of the bacterium to 'step into' the host cell's cytoplasm from the endocytotic vacuole, where it appears to polymerize actin filaments to spread across cells in the closer vicinity. B. pseudomallei effectively evades the host's surveillance armory to remain latent for prolonged duration also causing relapses despite antimicrobial therapy. Therefore, eradication of intracellular B. pseudomallei is highly dependent on robust cellular immune responses. However, it remains ambiguous why certain individuals in endemic areas experience asymptomatic seroconversion, whereas others succumb to sepsis-associated sequelae. Here, we propose key insights on how the host's surveillance radars get commandeered by B. pseudomallei.


Subject(s)
Burkholderia pseudomallei/immunology , Immunologic Surveillance , Melioidosis/immunology , Animals , Burkholderia pseudomallei/pathogenicity , Host Microbial Interactions , Humans , Virulence
6.
J Control Release ; 330: 284-292, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-932122

ABSTRACT

Pulmonary melioidosis is a bacterial disease with high morbidity and a mortality rate that can be as high as 40% in resource-poor regions of South Asia. This disease burden is linked to the pathogen's intrinsic antibiotic resistance and protected intracellular localization in alveolar macrophages. Current treatment regimens require several antibiotics with multi-month oral and intravenous administrations that are difficult to implement in under-resourced settings. Herein, we report that a macrophage-targeted polyciprofloxacin prodrug acts as a surprisingly effective pre-exposure prophylactic in highly lethal murine models of aerosolized human pulmonary melioidosis. A single dose of the polymeric prodrug maintained high lung drug levels and targeted an intracellular depot of ciprofloxacin to the alveolar macrophage compartment that was sustained over a period of 7 days above minimal inhibitory concentrations. This intracellular pharmacokinetic profile provided complete pre-exposure protection in a BSL-3 model with an aerosolized clinical isolate of Burkholderia pseudomallei from Thailand. This total protection was achieved despite the bacteria's relative resistance to ciprofloxacin and where an equivalent dose of pulmonary-administered ciprofloxacin was ineffective. For the first time, we demonstrate that targeting the intracellular macrophage compartment with extended antibiotic dosing can achieve pre-exposure prophylaxis in a model of pulmonary melioidosis. This fully synthetic and modular therapeutic platform could be an important therapeutic approach with new or re-purposed antibiotics for melioidosis prevention and treatment, especially as portable inhalation devices in high-risk, resource-poor settings.


Subject(s)
Melioidosis , Prodrugs , Animals , Humans , Lung , Macrophages, Alveolar , Melioidosis/drug therapy , Melioidosis/prevention & control , Mice , Polymers
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.17.387555

ABSTRACT

An inexpensive readily manufactured COVID-19 vaccine that protects against severe disease is needed to combat the pandemic. We have employed the LVS {Delta}capB vector platform, previously used successfully to generate potent vaccines against the Select Agents of tularemia, anthrax, plague, and melioidosis, to generate a COVID-19 vaccine. The LVS {Delta}capB vector, a replicating intracellular bacterium, is a highly attenuated derivative of a tularemia vaccine (LVS) previously administered to millions of people. We generated vaccines expressing SARS-CoV-2 structural proteins and evaluated them for efficacy in the golden Syrian hamster, which develops severe COVID-19 disease. Hamsters immunized intradermally or intranasally with a vaccine co-expressing the Membrane (M) and Nucleocapsid (N) proteins, then challenged 5-weeks later with a high dose of SARS-CoV-2, were protected against severe weight loss and lung pathology and had reduced viral loads in the oropharynx and lungs. Protection by the vaccine, which induces murine N-specific interferon-gamma secreting T cells, was highly correlated with pre-challenge serum anti-N TH1-biased IgG. This potent vaccine against severe COVID-19 should be safe and easily manufactured, stored, and distributed, and given the high homology between MN proteins of SARS-CoV and SARS-CoV-2, has potential as a universal vaccine against the SARS subset of pandemic causing {beta}-coronaviruses.


Subject(s)
Severe Acute Respiratory Syndrome , Weight Loss , COVID-19 , Tularemia , Melioidosis
8.
Drug Discov Ther ; 14(2): 107-108, 2020 May 06.
Article in English | MEDLINE | ID: covidwho-625590

ABSTRACT

The recent clinical trial reports pertaining to the efficacy of chloroquine and hydroxychloroquine against COVID-19 albeit yet to be validated with larger clinical trials, have sparked much interest globally to evaluate whether this anti-malarial drug can be repurposed for the treatment of COVID-19. In addition to its anti-viral activity, the anti-inflammatory activity of chloroquine may also contribute to its efficacy. Based on our data obtained from an animal infection model of melioidosis (a disease caused by the bacteria Burkholderia pseudomallei), treatment with chloroquine can result in the phosphorylation and consequent inhibition of glycogen synthase kinase-3ß (GSK3ß). This serine/threonine protein kinase is now recognised as a point of convergence for host inflammatory response. In view of this, it is plausible that the mechanism for the anti-inflammatory effect of chloroquine against COVID-19 involves inhibition of host GSK3ß.


Subject(s)
Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Pneumonia, Viral/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Betacoronavirus , COVID-19 , Disease Models, Animal , Melioidosis/drug therapy , Pandemics , Phosphorylation , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL